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The effects of shear and vorticity on deformation of a drop 
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(Received 22 August 1978 and in rcvised form 28 December 1979) 

A fluid drop immersed in a second incompressible fluid is deformed by a motion which, 
far from the drop, varies linearly with distance. Deformation of the drop is then 
determined by both the rate of deformation and the vorticity of the continuous fluid 
phase far from the drop. Experiments are described in which the vorticity and rate 
of deformation were independently varied by means of an eccentric-disk rheometer 
field. It is shown that predictions from a small-parameter expansion to first order in 
E = ,uoGb/u are in good agreement with experiment to values of e as large as 0.4, 
where ,uo is viscosity of the continuous phase, G a measure of the flow strength, b the 
drop radius, and u the interfacial tension. 

Of the several terms which arise in the O ( E )  expansion, only that one which con- 
tains a Jaumann derivative of the deformation parameter provides an important 
contribution beyond Taylor's original analysis of the problem. This fact greatly 
simplifies the computation of drop shape. 

1. Introduction 
There are several motivations for studying the response of a fluid drop to the motion 

of a second fluid phase surrqunding the drop. The multiphase nqture of the problem 
is a special challenge to fluid mechanists because of the effect of flow on the location 
of the boundary separating continuous and discontinuous phases. The problem also 
represents the basic unit governing the behaviour of emulsions in technologically 
important flows. Finally, it has become apparent that many qualitative features 
of rheologically complex fluids, examples being polymer solutions and polymer melts, 
are shared with the bulk properties of two-phase mixtures. In particular, dilute 
two-phase systems (i.e. systems for which interactions between segments of the discon- 
tinuous phase are not important) hold a special attraction as models of rheologically 
complex fluids, because macroscopic bulk behaviour of the mixture can often be 
computed in terms of fundamental properties of each individual phase. Thus one 
has a model with identifiable physical parameters and a means to compute bulk 
constitutive behaviour in terms of these parameters. 

Relevant to the present work are the studies of Schowalter, Chaffey & Brenner 
(1968) of the effect of drop deformation on the rheology of a dilute emulsion of two 
Newtonian fluids, the extension of that work to more general situations by Frankel & 
Acrivos (1970), and analyses by Cox (1969) and by Barthbs-Biesel & Acrivos (1973). 
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Cox and Frankel & Acrivos showed how to predict the shape of a slightly deformed 
Newtonian drop when it is surrounded by a second Newtonian phase which, a t  large 
distances from the drop, possesses a velocity field varying linearly with distance. These 
results were extended to higher order in the deformation by Barthbs-Biesel & Acrivos. 
A unification of these analyses has been provided by Rallison (1980). 

One of the interesting features of the foregoing analyses is a prediction that the 
drop shape is affected differently by the symmetric and the antisymmetric portions of 
the far-field velocity gradient; i.e. by both the rate of deformation and the vorticity. 
This result has important rheological implications, because the constitutive equation 
representing the behaviour of the multiphase bulk system will clearly be sensitive to 
the shape of the discontinuous phase (Schowalter 1979). The importance of the differ- 
ent effects of rate of deformation and vorticity does not seem to have been fully 
appreciated, probably because in all of the examples for which drop shape has been 
calculated, and in most of the viscometers in which rheological properties are deter- 
mined, there is a one-to-one relation between rate of deformation and vorticity ; as soon 
as the rate of deformation is determined, the vorticity is also fixed. Examples of the 
most common prototype flows for which one is likely to see calculations are laminar 
shear flows (such as Couette flow), where the non-zero components of the rate of 
deformation and the vorticity are numerically equal, and uniaxial extension or 
compression, for which the vorticity is zero. 

Because of the desire to explore the different effects of vorticity and rate of deforma- 
tion on drop shape, and because of the known importance of the relative amounts of 
vorticity and rate of deformation on drop and cluster breakup, it was decided to 
study drop shape in a flow different from those used heretofore. In the flow field of an 
eccentric-disk rheometer (also called an orthogonal rheometer) one is at  liberty in- 
dependently to alter the rate of deformation and the vorticity within the limits of weak 
flows; i.e. a norm of the ratio of rate of deformation to vorticity can be varied between 
zero and unity. Consequently, this flow geometry is convenient for our purposes, and 
we have studied the shape of single drops in the flow field generated by an orthogonal 
rheometer. Excellent agreement was obtained between predictions for drop shape and 
experimental results. 

In  $ 2  we review the flow which obtains in an orthogonal rheometer flow field and 
provide an expression for drop shape. Section 3 contains a description of experimental 
apparatus and procedure for studying the shape of a single drop in an orthogonal 
rheometer. Experimental results are presented in 9 4. 

2. Orthogonal rheometer flow field 
Kinematics 

The most comprehensive analysis of the eccentric-disk rheometer is that of Abbott & 
Walters (1 970). The flow field is shown schematically in figure 1. Two circular parallel 
disks are each rotated at  angular speed Q. Fluid is contained in the gap, of height h, 
separating the disks. The fluid is subjected to a combination of shear and rotation 
which is governed by the rotational speed R and the offset a of the centre of rotation 
of one disk relative to the other. Abbott & Walters have shown that if inertial effects 
are negligible; i.e. [pQ2/2,u]+ h 4 1, where p is the fluid density and ,.u the viscosity, 
then at  any value of z the flow is a solid-body rotation about the point at  z on a line 
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FIGURE 1. Schematic diagram of the eccentric-disk rheometer, (a )  top view, ( b )  front view. 

joining the centres of rotation of the two disks. Thus, with respect to the axes of 

(2.1) 
figure 1, 

vz = - Qy+ Q$h.Z, vy = f ix,  v5 = 0, 

where the eccentricity is given by @ = a/h. Deformation rate and vorticity, respect- 
ively, are 

Components of the vorticity vector are wk,  where wk is defined by wij = - $ E ~ ~ ~ w ~ .  
Thus 

(2.4) (Wk) = (0, Q$h, 2Q). 

It is immediately apparent from (2.2) and (2.3) that one can independently alter the 
magnitude of e and w through suitable combinations of fi and @. This is to be con- 
trasted, for example, with the laminar shear flow vl = K X ~ ,  for which eii = f w i i ;  or 
with extensional flows (pure shear), for which wii = 0. 

Drop shape 

We shall be concerned solely with the weak flow case discussed by Rallison (1980). 
Here k > 1 ,  h = o ( k ) ,  where k = a/p,Gb, 8 = k-1, and h = ,uu*/,uo. Interfacial tension 
is given by (r, b is the radius of the undeformed spherical drop, ,uo and,u* are viscosities 
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of the continuous and discontinuous phases, respectively, and G is a measure (for 
example, the second invariant) of the rate-of-deformation tensor. Drop shape is given 
bY 

r = 1 + e f ( x i / r )  + O(e2),  (2.5) 

and the coefficients cj and Hijkz are governed by equations (5) and (6) of Rallison (1  980)' 
which we reproduce here 

' 

9Fi j  
B -  = a , e i j + a l ~ i + e u 2 S d ( e i z ~ j )  +sa3Sd(&li;i) + O(e2), (2.7)t 

(2.8) 

a 
9Hij - 

C- - b0Hij-t blSd4(eill$) + b2Sd,(F,,F,,) + O(B) .  9 t  

Coefficients in (2.7) are 

a, = - lO(4h- 9) 
7(2h + 3)2 ' 

a3 = 

u2 = 
5 

3(2A+3)' 

288( 137h3 + 624h2 + 741h + 248) 
7(2h + 3)2 (19A + 16)2 

40(h + 1)  
= - (2h+ 3) (19h+ 16)' 2 

1 
b -- - 360(h + 1)  

b -  
O -  (17h+16)(1Oh+11)' '- 7(2h+3)' 

f6( - 14h3 + 207h2 + 431A + 192) 
b -  - 21(2h+3)(19h+16)(17h+l6)(10h+11)' 

and variables with units of time have been made dimensionless with G = a$. For 
any tensor with components aij or a i j k l ,  

Sd(Uii) = +(aij + aji) - +sij a,. 
Sd,(aifktj = &[the sum of 24 permutations of aijkl] -&,(the sum of 6 permuta- 

tions of [&(the sum of 12 permutations of akzmm)]} 

+&('ij'kZ+ 8ik8jZ+8iZSjk) (ammrut +amnmn +'mnnm). 

We wish to compare predictions of drop shape, at  steady state, with the results of 
experiments described below. In  general the solution of coupled nonlinear equations 
(2.7) and (2.8) is required, and it is natural to consider approximate solutions. The 
simplest is to retain only 

a,eij + a1K, = 0. (2.9) 

This, of course, is the expression used by Taylor (1934) and is known to be followed in 
the limit of small deformations. 

t The Jaumann time derivative often occurs in constitutive expressions for rheologically 
complex materials. It is a time derivative relative to axes rotating with angular velocity 3w 
in a laboratory-fixed frame of reference 
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The next step one might consider is to include the Jaumann derivative in (2.7) but 
to retain a linear, uncoupled equation. Then 

(2.10) 

A solution can readily be obtained, and one finds 

Fll = M[4N2 + (W/G)'], 
F2' = 12M(!2/G)2, 

F33 = - M[4N2 + 4( W/G)'- 31, 

F12 = F21 = 6MN!2/G, 

F13 = FS1 = MN[4N2+ 4( W/G)' - 31, 

F23 = F32 = 2M(!2/G) [2N2+ 2( - 31, 

G = !2$, 

M =  

W = Q(4+ $"*, 
5k 

6(2h + 3) [4N2 + ( W/G)'] [N2 + ( W/G)21' 

(2.11) 

where 

40k(h + 1)  
(2h+3)(19h+16)'  

N =  

and we have set 6 = k-l. 

3. Experiments 
Flow apparatus 

The objective of the experiments was to measure small deformations of a drop sus- 
pended in a continuous phase, which at  large distances from the drop, is undergoing 
the motion described by (2.1).  The flow was generated with a modified Model R16 
Weissenberg Rheogoniometer. A diagram of the flow system is shown in figure 2. The 
lower plate, which was fastened to the rotating member of the rheogoniometer, had an 
inner diameter of 11-5 cm and a lip 1.5 cm high. Fluid was contained between this 
lower plate and an upper plate, which was 0.6 cm thick and 10-2 cm in diameter. Both 
plates were Plexiglas. The upper plate was fastened to a cylindrical Plexiglas support 
which was 4.5 cm high and had an inner diameter of 8-7 cm. The cylinder was in turn 
secured to a ring-shaped aluminium support mounted on top of an air bearing. The 
housing for the air bearing was connected to the main column of the rheogoniometer 
through a specially constructed track mechanism. The track allowed movement of 
the air-bearing assembly in the horizontal (y) direction, and the rheogoniometer post 
permitted movement of the upper plate in the vertical (2) direction. The air bearing 
insured rotation of the upper plate at  very nearly the same rotational speed as that 
of the bottom plate. The bearing was built to our specifications and is described else- 
where (Hakimi 1976). Gap distance and eccentricity were read to & 0*0002 cm with 
micrometer gauges. 

Fluids 

Following the choice of Torza, Cox & Mason (1972), we used D-B castor oil as the 
continuous phase because of the close correspondence between refractive indices of 
Plexiglass (1474) and the castor oil (1.4774). Viscosity of the castor oil was 7.1926P 
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FIUURE 2. Flow apparatus. A, base of rheogoniometer; B, lower platen adapter; C, cylindrical 
connector; D, aluminium retainer; E, rubber O-ring; F, box container; G, lower plate of flow 
cell; H, upper plate of flow cell; I, cylindrical support; J, rigid support; K, air bearing; L, 
aluminium ring support; M, vertical block support ; N, vertical support with key ; 0, aluminium 
rods ; P, main column of Weissenberg rheogoniometer. 

a t  22 "C. Drops were formed from a mixture of two different Dow Corning silicone 
fluids (series 200). The mixture had a nominal refractive index of 1.40 and a viscosity 
at 22 "C of 0.652 P. Interfacial tension between the fluids was taken to be 4.1 dyne em-*, 
the value reported by the supplier of the silicone fluid and the value used by others 
(Torza et al. 1972). 

Flow visualization and recording 

Drop shapes were observed with a camera-microscope system which was mounted 
either in front of the test chamber or above it. Thus projections of drops onto the yz 
and xy planes were obtained. An adequate working distance and field of view were 
obtained by combination of a Bausch & Lomb I0 x focusable eyepiece and a 1.5 x 
Leitz Wetzler objective in a Mono lux body tube. Drops were illuminated with a 
focusable illuminator (American Optical Model 6538). Light from the illuminator was 
passed through two heat-absorbing filters to  minimize temperature changes in the 
fluids. Illumination and observation were facilitated by surrounding the flow cell with 
the Plexiglas box container shown in figure 2. The container was 15.5cm square, 
2.5 cm high, and had walls 0.5 ern thick. It was filled with castor oil so that the refrac- 
tive index along optical paths between the (flat) airlcontainer and castor oil/silicone 
surfaces was nearly constant. Leakage from the bottom of the container was minimized 
with an O-ring seal, as shown in the figure. The microscope was attached, through an 
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adapter and bellows extension, to  a Hasselblad 500C single-lens reflex camera. The 
camerawas mountedon a rigid supportwith a vernier system that permitted controlled 
movement for alignment and focusing. Photographs were taken with Kodak Royal-Z 
film (A.S.A. = 1250) and developed by a procedure that raised the effective A.S.A. 
rating to 4500. 

Experimental procedure 

Before addition of fluid to  the test section, the two plates were carefully aligned to 
insure that they were level and concentric. Also, the magnification of the camera- 
microscope system was calibrated by taking photographs of a ruled stage micrometer 
under conditions identical with those used for photographing the drop. 

After addition of the castor oil, a drop of silicone fluid was inserted with a h y p -  
dermic syringe. Drop radius was nominally 1 mm. The upper plate was then placed a t  
the desired offset and lowered from a known setting until it contacted the castor oil. 
The rheogoniometer was engaged and minor adjustment of the drop achieved by 
braking the upper plate until the drop was approximately midway between the 
plates and on a line joining their centres of rotation. Further details of the alignment 
and calibration procedure are available (Hakimi 1976). 

Preliminary runs were conducted to  insure reproducibility and to  find ranges of 
parameters for which deformation was measurable but not extreme. Experiments for 
which photographs were taken from both the x and z directions covered nine eccentri- 
cities ranging from 0 ,< $ < 0.709 and fifteen rotational speeds between 1.8 and 
45 r.p.m. Gap settings were 0.680 cm for photographs taken in the z direction and 
0.714 ern for those taken in the x direction. An average of three photographs from a 
given direction were taken for each run. 

4. Results 
Raw data from the experiments consist of photographs in the xy and yz planes of the 

drops when deformed in flow fields characterized by various values of $ and Q. These 
shapes can be compared to  projected drop shapes predicted from the solution of 
(2.7)-(2.8), or the approximations (2.9) or (2.10). A comparison for the extreme case 
of k-I = e >, 0.44 is shown in figure 3. 

A more efficient presentation of the results is to compare measured and computed 
drop shapes by means of a deformation parameter D = (L-B) / (L+B) ,  L and B 
being the length and breadth, respectively, of the drop. These values for drop projec- 
tions are designated Dzy, Dyz, etc. Orientation of the drop projections is designated by 
q 5 i j .  Thus q5zy is the angle between the major axis of the xy projection of a drop and 
the x axis. Likewise q5yz is the angle between the major axis of the yz projection and 
the y axis. 

I n  figures 4-7 we show these quantities for selected experiments, along with the 
corresponding theoretical predictions based upon (2.7)-( 2.8) and the approximation 
(2.10). One notes, in accord with theory, that  drop shape and orientation depend upon 
both vorticity and rate of deformation of the surrounding flow field. Probably the 
most interesting facet of the results is the good agreement between experiments and 
small-deformation theory for values of the expansion parameter approaching E = 0.4 
and deformation parameter D 2 0.2. 

Implicit, in the calculations are the shape and orientation of the deformed drop 
21 P L M  98 
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Y 

FIGURE 3. Projection of drop shape. ( a )  The xy projection for ?,k = 0.577, R = 4.72 s-l, E = k-' 
= 0.478. ( b )  The yz projection for $ = 0.532, R = 4.73s-', E = k-' = 0.440. - , theory, 
equations (2.7)-(2.8); - - -, experiment; ---, undeformed drop; , equation (2.9).  
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FIGURE 4. Variation of D,, with expansion parameter 6 .  -,equations (2.7)-(2.8) ;---,equation 
(2.10); 0 ,  experiment. (a) R = 1.88 s-l; ( 6 )  R = 2.97 s-l; (c) R = 4.72 s-l. 

FIGURE 5. 

t *’ 
I I I I I 1 I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
E 

Variation of D,with expansion parameter B .  -,equations (2.7)-(2.8) 
(2.10); 0 ,  experiment. (a) R = 2.36 s-l; ( 6 )  n = 4.72 8-1. 

._-_ , ,equation 

itself, rather than its projections. Those results, although available, are not readily 
compared to experimental data and hence have not been included here. 

It is of interest to note from figure 4 and 5 that equation (2. lo), which differs from 
the Taylor solution (2.9) by inclusion of the Jaumann derivative, provides results of 
little difference from those of the coupled, nonlinear equations (2.7)-(2.8). In fact, 

11-s 
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FIGURE 6. Variation of orientation angle $,, with expansion parameter E .  ~ , equations 
(2,7)-(2.8); ---, equation (2.10); 0 ,  experiment. (a) R = 2.9 s-l; ( b )  R = 4-72 s-l. 
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FIGURE 7. Variation of orientation angle with expansion parameter 8. __ , equations 
(2.7)-(2.8); ---, equation (2.10); 0 ,  experiment. R = 4.72 s-l. 

the shapes given in figures 3 (a) and ( b )  are nearly superposable for the two solutions. 
The form (2.9), however, gives poor agreement with experiment, as is evident from 
figure 3 (a). Similar large differences are evident if one compares experimental pro- 
jection ratios D,, or D,, with (2.9). 

Agreement of predicted and observed drop orientation in figure 6 is less satisfactory. 
One can see from figure 3 (a) ,  however, that the measurement is subject to errors of at 
least f 5'. The larger deformations in the yz plane no doubt account for the better 
agreement in figure 7. 

It is of course impossible to make a general statement concerning the validity of 
the approximation (2.10). One would expect, however, that the equation should be 
useful for weak flows for which the drop deformation is comparable to that in the 
experiments reported here. 

5. Conclusions 
The flow generated by eccentric rotating disks has been shown to be useful for 

studies of drop deformation because the deformation rate and the vorticity can be 
independently altered. Each of these affects the drop shape and orientation. Prior 
experimental studies of drop deformation by viscous forces have been in more con- 
ventional flow fields in which vorticity and rate of deformation are not independent. 
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It has been shown that the theory for drop deformation to O(e)  applies to values of 
E 0.2. Furthermore, negligible accuracy is sacrificed by neglecting 
terms which involve products of the shape factor Ti with itself or with components 
of the rate of deformation eii. 
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